منابع مشابه
Adaptive Iterative Thresholding Algorithms for Magnetoenceophalography (MEG)
We provide fast and accurate adaptive algorithms for the spatial resolution of current densities in MEG. We assume that vector components of the current densities possess a sparse expansion with respect to preassigned wavelets. Additionally, different components may also exhibit common sparsity patterns. We model MEG as an inverse problem with joint sparsity constraints, promoting coupling of n...
متن کاملFreely Available, Optimally Tuned Iterative Thresholding Algorithms for Compressed Sensing
We conducted an extensive computational experiment, lasting multiple CPU-years, to optimally select parameters for important classes of algorithms for finding sparse solutions of underdetermined systems of linear equations. We make the optimally tuned implementations freely available at sparselab.stanford.edu; they can be used ’out of the box’ with no user input: it is not necessary to select t...
متن کاملPerformance analysis for a class of iterative image thresholding algorithms
A performance analysis procedure that analyses the properties of a class of iterative image thresholding algorithms is described. The image under consideration is modeled as consisting of two maximum-entropy primary images, each of which has a quasi-Gaussian probability density function. Three iterative thresholding algorithms identified to share a common iteration architecture are employed for...
متن کاملAccelerated iterative hard thresholding
The iterative hard thresholding algorithm (IHT) is a powerful and versatile algorithm for compressed sensing and other sparse inverse problems. The standard IHT implementation faces two challenges when applied to practical problems. The step size parameter has to be chosen appropriately and, as IHT is based on a gradient descend strategy, convergence is only linear. Whilst the choice of the ste...
متن کاملIterative Thresholding for Sparse Approximations
Sparse signal expansions represent or approximate a signal using a small number of elements from a large collection of elementary waveforms. Finding the optimum sparse expansion is known to be NP hard in general and non-optimal strategies such as Matching Pursuit, Orthogonal Matching Pursuit, Basis Pursuit and Basis Pursuit De-noising are often called upon. These methods show good performance i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2008
ISSN: 1063-5203
DOI: 10.1016/j.acha.2007.10.005